Skip to main content

الأسفل المتوسط المتحرك المتوسط المرجح ماتلاب


الوثائق يوضح هذا المثال كيفية استخدام الفلاتر المتوسطة المتحركة وإعادة العزلة لعزل تأثير المكونات الدورية للوقت من اليوم على قراءات درجة الحرارة كل ساعة، وكذلك إزالة الضوضاء الخط غير المرغوب فيها من قياس الجهد المفتوح حلقة. ويبين المثال أيضا كيفية تسهيل مستويات إشارة الساعة مع الحفاظ على الحواف باستخدام مرشح متوسط. يوضح المثال أيضا كيفية استخدام فلتر هامبيل لإزالة القيم المتطرفة الكبيرة. الدافع التمويه هو كيف نكتشف الأنماط الهامة في بياناتنا في حين ترك الأشياء التي هي غير مهمة (أي الضوضاء). نحن نستخدم تصفية لتنفيذ هذا التمهيد. هدف التمهيد هو إحداث تغييرات بطيئة في القيمة بحيث أسهل لرؤية الاتجاهات في بياناتنا. في بعض الأحيان عند فحص بيانات الإدخال قد ترغب في تسهيل البيانات من أجل رؤية اتجاه في الإشارة. في مثالنا لدينا مجموعة من قراءات درجة الحرارة في مئوية أخذت كل ساعة في مطار لوغان لكامل شهر يناير 2011. لاحظ أننا يمكن أن نرى بصريا تأثير أن الوقت من اليوم لديه على قراءات درجة الحرارة. إذا كنت مهتما فقط في التغير في درجة الحرارة اليومية على مدار الشهر، وتقلبات ساعة تسهم فقط الضوضاء، والتي يمكن أن تجعل من الصعب التعرف على الاختلافات اليومية. ولإزالة تأثير الوقت من اليوم، نود الآن تسهيل بياناتنا باستخدام فلتر متوسط ​​متحرك. مرشاح متوسط ​​متحرك في أبسط أشكاله، فإن مرشاح المتوسط ​​المتحرك للطول N يأخذ متوسط ​​كل N عينة متعاقبة من شكل الموجة. ولتطبيق مرشح متوسط ​​متحرك على كل نقطة بيانات، نقوم ببناء معاملاتنا في عامل التصفية بحيث تكون كل نقطة مرجحة على قدم المساواة وتساهم ب 124 في المتوسط ​​الكلي. هذا يعطينا متوسط ​​درجة الحرارة على مدى كل 24 ساعة. فيلتر ديلاي لاحظ أن الإخراج المصفى يتأخر بنحو اثني عشر ساعة. ويرجع ذلك إلى حقيقة أن عامل تصفية المتوسط ​​المتحرك له تأخير. أي مرشح متماثل طول N سوف يكون لها تأخير من (N-1) 2 عينات. يمكننا حساب هذا التأخير يدويا. استخراج الفروق المتوسطة بدلا من ذلك، يمكننا أيضا استخدام فلتر المتوسط ​​المتحرك للحصول على تقدير أفضل لكيفية تأثير الوقت من اليوم على درجة الحرارة الكلية. للقيام بذلك، أولا، طرح البيانات ممهدة من قياسات درجة الحرارة ساعة. بعد ذلك، صنف البيانات المختلفة إلى أيام واحصل على المتوسط ​​خلال كل 31 يوما في الشهر. استخراج الذروة المغلف في بعض الأحيان نود أيضا أن يكون لها تقدير متفاوت بسلاسة لكيفية ارتفاعات وانخفاض مستويات الحرارة لدينا إشارة تغيير يوميا. للقيام بذلك يمكننا استخدام وظيفة المغلف لربط أعلى مستوياته القصوى والهبوط المكتشفة على مجموعة فرعية من فترة 24 ساعة. في هذا المثال، علينا أن نضمن أن هناك ما لا يقل عن 16 ساعة بين كل ارتفاع الشديد والمتطرف الشديد. ويمكننا أيضا أن نحصل على فكرة عن الكيفية التي تتجه بها الرتفاعات والهبوط من خلال أخذ المتوسط ​​بين النقيضين. عوامل التصفية المتوسطة المتحركة المرجحة أنواع أخرى من المرشحات المتوسطة المتحركة لا تزن كل عينة بالتساوي. مرشح مشترك آخر يتبع توسع الحدين من (12،12) n هذا النوع من المرشح يقترب من منحنى العادي للقيم الكبيرة من n. ومن المفيد لتصفية الضوضاء عالية التردد ل n الصغيرة. للعثور على معاملات للمرشح ذي الحدين، 1212 12 مع نفسه ومن ثم تكرارا تزامن الإخراج مع 12 12 عدد محدد من المرات. في هذا المثال، استخدم خمس تكرارات إجمالية. مرشح آخر يشبه إلى حد ما مرشح توسع غاوس هو مرشح المتوسط ​​المتحرك الأسي. هذا النوع من المرشح المتوسط ​​المتحرك المرجح يسهل بناؤه ولا يتطلب حجم نافذة كبير. يمكنك ضبط عامل تصفية متوسط ​​متحرك أضعافا مضاعفة بواسطة معلمة ألفا بين الصفر وواحد. وهناك قيمة أعلى من ألفا يكون أقل تمهيد. التكبير في القراءات ليوم واحد. حدد بلدك الوثائق يوضح هذا المثال كيفية استخدام مرشحات المتوسط ​​المتحرك وإعادة عزل لعزل تأثير المكونات الدورية من الوقت من اليوم على قراءات درجة الحرارة كل ساعة، وكذلك إزالة الضوضاء خط غير المرغوب فيها من قياس الجهد حلقة مفتوحة. ويبين المثال أيضا كيفية تسهيل مستويات إشارة الساعة مع الحفاظ على الحواف باستخدام مرشح متوسط. يوضح المثال أيضا كيفية استخدام فلتر هامبيل لإزالة القيم المتطرفة الكبيرة. الدافع التمويه هو كيف نكتشف الأنماط الهامة في بياناتنا في حين ترك الأشياء التي هي غير مهمة (أي الضوضاء). نحن نستخدم تصفية لتنفيذ هذا التمهيد. هدف التمهيد هو إحداث تغييرات بطيئة في القيمة بحيث أسهل لرؤية الاتجاهات في بياناتنا. في بعض الأحيان عند فحص بيانات الإدخال قد ترغب في تسهيل البيانات من أجل رؤية اتجاه في الإشارة. في مثالنا لدينا مجموعة من قراءات درجة الحرارة في مئوية أخذت كل ساعة في مطار لوغان لكامل شهر يناير 2011. لاحظ أننا يمكن أن نرى بصريا تأثير أن الوقت من اليوم لديه على قراءات درجة الحرارة. إذا كنت مهتما فقط في التغير في درجة الحرارة اليومية على مدار الشهر، وتقلبات ساعة تسهم فقط الضوضاء، والتي يمكن أن تجعل من الصعب التعرف على الاختلافات اليومية. ولإزالة تأثير الوقت من اليوم، نود الآن تسهيل بياناتنا باستخدام فلتر متوسط ​​متحرك. مرشاح متوسط ​​متحرك في أبسط أشكاله، فإن مرشاح المتوسط ​​المتحرك للطول N يأخذ متوسط ​​كل N عينة متعاقبة من شكل الموجة. ولتطبيق مرشح متوسط ​​متحرك على كل نقطة بيانات، نقوم ببناء معاملاتنا في عامل التصفية بحيث تكون كل نقطة مرجحة على قدم المساواة وتساهم ب 124 في المتوسط ​​الكلي. هذا يعطينا متوسط ​​درجة الحرارة على مدى كل 24 ساعة. فيلتر ديلاي لاحظ أن الإخراج المصفى يتأخر بنحو اثني عشر ساعة. ويرجع ذلك إلى حقيقة أن عامل تصفية المتوسط ​​المتحرك له تأخير. أي مرشح متماثل طول N سوف يكون لها تأخير من (N-1) 2 عينات. يمكننا حساب هذا التأخير يدويا. استخراج الفروق المتوسطة بدلا من ذلك، يمكننا أيضا استخدام فلتر المتوسط ​​المتحرك للحصول على تقدير أفضل لكيفية تأثير الوقت من اليوم على درجة الحرارة الكلية. للقيام بذلك، أولا، طرح البيانات ممهدة من قياسات درجة الحرارة ساعة. بعد ذلك، صنف البيانات المختلفة إلى أيام واحصل على المتوسط ​​خلال كل 31 يوما في الشهر. استخراج الذروة المغلف في بعض الأحيان نود أيضا أن يكون لها تقدير متفاوت بسلاسة لكيفية ارتفاعات وانخفاض مستويات الحرارة لدينا إشارة تغيير يوميا. للقيام بذلك يمكننا استخدام وظيفة المغلف لربط أعلى مستوياته القصوى والهبوط المكتشفة على مجموعة فرعية من فترة 24 ساعة. في هذا المثال، علينا أن نضمن أن هناك ما لا يقل عن 16 ساعة بين كل ارتفاع الشديد والمتطرف الشديد. ويمكننا أيضا أن نحصل على فكرة عن الكيفية التي تتجه بها الرتفاعات والهبوط من خلال أخذ المتوسط ​​بين النقيضين. عوامل التصفية المتوسطة المتحركة المرجحة أنواع أخرى من المرشحات المتوسطة المتحركة لا تزن كل عينة بالتساوي. مرشح مشترك آخر يتبع توسع الحدين من (12،12) n هذا النوع من المرشح يقترب من منحنى العادي للقيم الكبيرة من n. ومن المفيد لتصفية الضوضاء عالية التردد ل n الصغيرة. للعثور على معاملات للمرشح ذي الحدين، 1212 12 مع نفسه ومن ثم تكرارا تزامن الإخراج مع 12 12 عدد محدد من المرات. في هذا المثال، استخدم خمس تكرارات إجمالية. مرشح آخر يشبه إلى حد ما مرشح توسع غاوس هو مرشح المتوسط ​​المتحرك الأسي. هذا النوع من المرشح المتوسط ​​المتحرك المرجح يسهل بناؤه ولا يتطلب حجم نافذة كبير. يمكنك ضبط عامل تصفية متوسط ​​متحرك أضعافا مضاعفة بواسطة معلمة ألفا بين الصفر وواحد. وهناك قيمة أعلى من ألفا يكون أقل تمهيد. التكبير في القراءات ليوم واحد. حدد بلدكتحميل movAv. m (انظر أيضا movAv2 - نسخة محدثة تسمح الترجيح) وصف ماتلاب يتضمن وظائف تسمى موفافغ و تسموفافغ (سلسلة الوقت المتوسط ​​المتحرك) في الأدوات المالية، تم تصميم موفاف لتكرار الوظائف الأساسية لهذه. يوفر رمز هنا مثالا لطيفا لإدارة الفهارس داخل الحلقات، والتي يمكن أن تكون مربكة لتبدأ. إيف عمدا أبقى رمز قصيرة وبسيطة للحفاظ على هذه العملية واضحة. موفاف ينفذ متوسط ​​متحرك بسيط التي يمكن استخدامها لاستعادة البيانات صاخبة في بعض الحالات. وهو يعمل عن طريق أخذ متوسط ​​المدخلات (y) على نافذة انزلاق الوقت، وحجم التي يتم تحديدها من قبل n. وكلما كان أكبر n، كلما زاد مقدار تمهيد تأثير n بالنسبة لطول متجه الدخل y. وبشكل فعال (جيدا، نوع من) يخلق مرشح تردد لوباس - انظر قسم الأمثلة والاعتبارات. ولأن كمية التجانس التي توفرها كل قيمة n هي نسبة إلى طول متجه الدخل، فإن قيمته دائما تستحق اختبار قيم مختلفة لترى ما هو مناسب. تذكر أيضا أنه يتم فقدان n نقاط على كل متوسط ​​إذا ن هو 100، أول 99 نقطة من ناقلات الإدخال لا تحتوي على بيانات كافية لمتوسط ​​100pt. ويمكن تجنب ذلك إلى حد ما عن طريق تكديس المتوسطات، على سبيل المثال، مقارنة الشفرة والرسم البياني أدناه بعدد من متوسطات إطار الطول المختلفة. لاحظ كيف يتم مقارنة 1010pt السلس إلى متوسط ​​20pt واحد. في كلتا الحالتين يتم فقدان 20 نقطة من البيانات في المجموع. إنشاء زاكسيس x1: 0.01: 5 توليد الضوضاء ضوضاء الضوضاء 4 ريبات (راندن (1، سيل (نوميل (x) نويزريبس))، نويزريبس، 1) إعادة تشكيل الضوضاء (الضوضاء، 1، الطول (الضوضاء) نويزريبس توليد الضوضاء يداتا يكس ( x) 10nnoise (1: لينغث (x)) بيرفورم إديتيونس: y2 موفاف (y، 10) 10 بت y3 موفاف (y2، 10) 1010 بت y4 موفاف (y، 20) 20 بت y5 موفاف (y، 40) 40 بت (x، y، y2، y3، y4، y5، y6) أسطورة (البيانات الخام، المتوسط ​​المتحرك 10pt، 1010pt، 20pt، 40pt، 100pt) زلابيل (x) يلابيل (y، 100) y) (مقارنة المتوسطات المتحركة) movAv. m كود تشغيل من خلال وظيفة الإخراج موفاف (y، n) يحدد السطر الأول اسم الدالات والمدخلات والمخرجات. وينبغي أن يكون الدخل x متجه البيانات من أجل أداء المتوسط ​​على n، وينبغي أن يكون عدد النقاط التي تؤدي إلى المتوسط ​​فوق المخرجات سيحتوي على البيانات المتوسطة التي تعادها الدالة. (1)، نوميل (y)) البحث عن نقطة منتصف ن منتصف الجولة (n2) يتم العمل الرئيسي من وظيفة في ل حلقة، ولكن قبل البدء يتم إعداد أمرين. أولا يتم تخصيص الإخراج مسبقا كما نانز، وهذا خدم غرضين. أولا ما قبل التخصيص هو ممارسة جيدة عموما لأنه يقلل من شعوذة الذاكرة ماتلاب يجب القيام به، وثانيا، فإنه يجعل من السهل جدا لوضع البيانات المتوسطة إلى إخراج نفس حجم ناقلات الإدخال. وهذا يعني أن نفس زاكسيس يمكن استخدامها في وقت لاحق لكلا، والتي هي مريحة للتآمر، بدلا من ذلك يمكن إزالة نانز في وقت لاحق في سطر واحد من التعليمات البرمجية (إخراج الإخراج (وسيستخدم منتصف متغير لمحاذاة البيانات في متجه الإخراج. إذا ن 10، سيتم فقدان 10 نقاط لأنه، لأول 9 نقاط من ناقلات الإدخال، لا توجد بيانات كافية لاتخاذ متوسط ​​10 نقطة، حيث أن الإخراج سيكون أقصر من المدخلات، فإنه يحتاج إلى محاذاة بشكل صحيح. وسوف منتصف ، بحيث يتم فقدان كمية متساوية من البيانات في البداية والنهاية، ويتم حفظ المدخلات محاذاة مع الإخراج من قبل المخازن المؤقتة نان التي تم إنشاؤها عند ترحيل الإخراج ل 1: طول (y) - n البحث عن مؤشر متوسط ​​يأخذ متوسط (a: b) بان (a: b) إند حساب في المتوسط ​​بالنسبة للحلقة نفسها، يتم حساب متوسط ​​على كل شريحة متتالية من الدخل، ويتم تشغيل الحلقة ل a وهي (y)، ناقص البيانات التي ستفقد (n) إذا كان المدخل 100 نقطة لو نغ و n هو 10، ستعمل الحلقة من (أ) من 1 إلى 90. وهذا يعني أن يوفر أول مؤشر للقطر ليكون متوسطه. المؤشر الثاني (ب) هو ببساطة 1-. لذلك على التكرار الأول، a1. n10. لذلك ب 11-1 10. يتم أخذ المتوسط ​​الأول على y (a: b). أو x (1:10). يتم تخزين متوسط ​​هذا القطاع، الذي هو قيمة واحدة، في الناتج في مؤشر أميدبوانت. أو 156. في التكرار الثاني، أ 2. ب 210-1 11. بحيث يتم أخذ المتوسط ​​على x (2:11) وتخزينها في الإخراج (7). على التكرار الأخير من حلقة لإدخال طول 100، a91. ب 9010-1 100 بحيث يؤخذ المتوسط ​​على x (91: 100) ويخزن في الإخراج (95). هذا يترك الناتج مع ما مجموعه n (10) قيم نان في مؤشر (1: 5) و (96: 100). أمثلة واعتبارات تعد المعدلات المتحركة مفيدة في بعض الحالات، لكنها ليست دائما الخيار الأفضل. وهنا مثالان حيث أنها ليست بالضرورة الأمثل. میکروفون المیکروفون تمثل مجموعة البیانات ھذه مستویات کل تردد یتم إنتاجھ بواسطة مکبر وتسجيلھ بواسطة میکروفون مع استجابة خطیة معروفة. يختلف خرج المتكلم مع التردد، ولكن يمكننا تصحيح هذا الاختلاف مع بيانات المعايرة - الإخراج يمكن تعديلها في المستوى لحساب التقلبات في المعايرة. لاحظ أن البيانات الخام صاخبة - وهذا يعني أن تغيير طفيف في التردد يبدو أن يتطلب تغيير كبير، غير منتظم، في المستوى لحساب. هل هذا واقعي أم أن هذا ناتج عن بيئة التسجيل من المعقول في هذه الحالة تطبيق متوسط ​​متحرك ينعم منحنى ليفيلفركنسي لتوفير منحنى المعايرة الذي هو أقل قليلا غير منتظمة. ولكن لماذا لا يكون هذا الأمثل في هذا المثال المزيد من البيانات سيكون أفضل - معايرة متعددة تعمل وسطيا معا من شأنه أن يدمر الضوضاء في النظام (طالما عشوائية لها) وتوفير منحنى مع تفاصيل أقل خفية فقدت. يمكن للمتوسط ​​المتحرك تقريب هذا فقط، ويمكن إزالة بعض الانخفاضات تردد أعلى وقمم من المنحنى التي توجد بالفعل. الموجات الجيبية باستخدام المتوسط ​​المتحرك على موجات جيبية يسلط الضوء على نقطتين: المسألة العامة لاختيار عدد معقول من النقاط لأداء المتوسط ​​أكثر. لها بسيطة، ولكن هناك طرق أكثر فعالية من تحليل الإشارات من المتوسطات تتأرجح إشارات في المجال الزمني. في هذا الرسم البياني، يتم رسم موجة جيبية الأصلية باللون الأزرق. يتم إضافة الضوضاء وتآمر كما منحنى البرتقال. ويجرى المتوسط ​​المتحرك بأعداد مختلفة من النقاط لمعرفة ما إذا كان بالإمكان استرداد الموجة الأصلية. 5 و 10 نقاط تقدم نتائج معقولة، ولكن لا إزالة الضوضاء تماما، حيث أن أعداد أكبر من النقاط تبدأ في فقدان التفاصيل السعة كمتوسط ​​يمتد على مراحل مختلفة (تذكر الموجة تتأرجح حول الصفر، ويعني (-1 1) 0) . وهناك نهج بديل يتمثل في إنشاء مرشح لوباس مما يمكن تطبيقه على الإشارة في مجال التردد. إم لن يذهب إلى التفاصيل لأنها تتجاوز نطاق هذه المادة، ولكن كما الضوضاء هو تردد أعلى بكثير من موجات التردد الأساسي، سيكون من السهل إلى حد ما في هذه الحالة لبناء مرشح لوباس من إزالة عالية التردد الضوضاء.

Comments

Popular posts from this blog

تداول الفوركس روبوت 2012

بطولة التداول الآلي 2012 شركة ميتاكوتس للبرمجيات .. ألباري (المملكة المتحدة) المحدودة. عقدت شركة يونايتد ورلد كابيتال المحدودة و روبأوفوريكس لب البطولة السنوية السادسة للتجارة الآلية لعام 2012. وبعد ثلاثة أشهر من الصراع العنيف، تم تحديد أفضل ثلاثة مطوري استراتيجيات التداول الآلي. وكان معيار التقييم هو الربح المطلق. شارك الفائزين بجائزة بطولة التداول الآلي 2012 بقيمة 80،000 دولار أمريكي لا يدعم متصفحك جافا سكريبت. تمكينه من رؤية التقارير عقدت البطولة من 1 أكتوبر إلى 28 ديسمبر 2012. الهدف الرئيسي من هذه المسابقة هو تعميم التداول الآلي ولغة البرمجة MQL5. خلال ثلاثة أشهر كنت قد شهدت كيف تتصرف أنظمة التداول المختلفة في ظروف السوق الحقيقية. وكان لديك فرصة لتقدير أي من استراتيجيات التداول المعروضة وتكتيكات فعالة والتي ليست في هذا الموقع يمكنك العثور على معلومات مفصلة حول العمليات التجارية لكل مشارك. في قسم الأخبار، يمكنك العثور على مقالات وتقارير ومقابلات مع مطوري إي. كل هذه المواد سوف تساعدك على فهم أفضل ما هي الميزات والخصائص المطلوبة لاستراتيجيات التداول الناجحة لتلبية الظروف القاسية من ال...

المراجحة في تقنيات التحوط من النقد الاجنبى

كيف يمكنني استخدام استراتيجية المراجحة في تداول العملات الأجنبية الفوركس المراجحة هي استراتيجية التداول خالية من المخاطر التي تسمح للتجار الفوركس التجزئة لتحقيق ربح مع عدم التعرض العملات المفتوحة. وتتضمن الاستراتيجية العمل بسرعة على الفرص التي تتيحها أوجه القصور في التسعير، في حين أنها موجودة. ويشمل هذا النوع من تداول المراجحة شراء وبيع أزواج العملات المختلفة لاستغلال أي عدم كفاءة التسعير. إذا كنا نلقي نظرة على المثال التالي، يمكننا فهم أفضل لكيفية عمل هذه الاستراتيجية. مثال - المراجحة تداول العملات أسعار الصرف الحالية لليورو مقابل الدولار الأميركي. ور غبب، أزواج غبوسد هي 1.1837، 0.7231، و 1.6388 على التوالي. في هذه الحالة، يمكن لمتداول الفوركس شراء واحدة صغيرة من اليورو مقابل 11،837 دولار أمريكي. ويمكن للتاجر بعد ذلك بيع 10،000 يورو، ل 7،231 جنيه استرليني. 7،231 غبب. يمكن بيعها مقابل 11،850 دولارا أمريكيا، مقابل ربح قدره 13 صفقة لكل صفقة، مع عدم وجود تعرض مفتوح لأن المراكز الطويلة تلغي المراكز القصيرة في كل عملة. نفس الصفقة باستخدام الكميات العادية (بدلا من القطع الصغيرة) من 100K، من ...